
Learning and Verification of Feedback Control

Systems using Feedforward Neural Networks.

Souradeep Dutta ∗ Susmit Jha ∗∗ Sriram Sankaranarayanan ∗

Ashish Tiwari ∗∗

∗University of Colorado, Boulder, (first.lastname@colorado.edu)
∗∗ SRI International, ({susmit.jha,tiwari}@sri.com)

Abstract We present an approach to learn and formally verify feedback laws for data-driven models
of neural networks. Neural networks are emerging as powerful and general data-driven representations
for functions. This has led to their increased use in data-driven plant models and the representation of
feedback laws in control systems. However, it is hard to formally verify properties of such feedback
control systems. The proposed learning approach uses a receding horizon formulation that samples from
the initial states and disturbances to enforce properties such as reachability, safety and stability. Next,
our verification approach uses an over-approximate reachability analysis over the system, supported by
range analysis for feedforward neural networks. We report promising results obtained by applying our
techniques on several challenging nonlinear dynamical systems.

Keywords: Reachability and safety analysis, verification, formal synthesis, neural networks

1. INTRODUCTION

In this paper, we provide an approach to synthesize verified
controllers for data-driven models of nonlinear systems towards
objectives such as reachability and region stability. Our ap-
proach works for plant models defined using a feed forward
neural network that has been inferred through regression on
actual measurement data. The goal is to synthesize feedback
laws that are also described by feedforward neural networks.
Such data-driven models are now increasingly common for
many types of systems (Hou et al. [2017b]). However, rigorous
approaches to synthesis and verification are often needed to
synthesize controllers.

In this work, we consider the problem of synthesizing neural
networks that can serve as state and output feedback laws to
achieve control objectives that can be specified as reachabil-
ity of a target set, region stability of a target set around an
equilibrium point, or in principle, logical formulas written in a
temporal logic such as signal temporal logic(STL) (Donzé and
Maler [2010]). Our approach incorporates two phases: (a) Data-
Driven model predictive control (MPC) for training the weights
of the feedback network from samples; and (b) Formal reacha-
bility analysis using range propagation as a primitive operation
that computes reachable states enabling an over-approximate
symbolic model checking of the resulting closed loop. The
reachability analysis builds a post condition operator over tem-
plate polyhedra with fixed LHS expressions, but variable con-
stants on the RHS of inequalities. The key primitive for con-
structing template polyhedra uses recently available approaches
such as ReluPlex that can check assertions involving neural
networks, as well as our recent approach called SHERLOCK

that computes intervals over output values of the network given
a predicate constraining the inputs (Dutta et al. [2017], Katz
et al. [2017]). We use SHERLOCK as a primitive to perform
reachability analysis, and thus adapt standard approaches to

build a symbolic model checker that can verify the resulting
feedback controller (Frehse et al. [2011]).

We demonstrate our approach successfully over a series of
challenging nonlinear control examples for underactuated sys-
tems with 2− 4 state variables showing how our approach can
synthesize region stabilizing controllers and at the same time
formally verify that these controllers satisfy the region stability
property . The controllers synthesized involve 100s of neurons
with intermediate verification problems that handle deep net-
works with as many as ∼ 100s of layers

Overall, the principal contribution of our approach is to estab-
lish evidence that a formal synthesis framework can combine
classic backpropagation-based training from samples and veri-
fication using reachability analysis tools. In particular, the con-
tributions include: (a) combination of backpropagation-based
training techniques with classic receding horizon MPC; (b) use
of range analysis as a primitive for symbolic model checking
neural network based closed loops and (c) empirical evidence of
feasibility of our approach especially over larger networks than
previously possible. At the same time, the approach is limited
to using template polyhedra with linear templates, has only
been developed for reachability and region stability properties
(though we make the case that other properties are possible) and
furthermore, lacks a refinement loop that can translate failure
of verification to test cases for the training. We continue to
investigate approaches for these limitations.

2. RELATED WORK

Data driven approaches for verification has received some at-
tention in literature. (Haesaert et al. [2017]), present a mea-
surement driven approach which relies on Bayesian inference
rules and reachability analysis to verify LTL properties. An-
other recent approach in using data driven techniques is the
DRY-VR framework proposed in (Fan et al. [2017]), which uses
simulation techniques combined with probabilistic verification

algorithms to reason about the system. Some verification tools
which rely on over-approximate reachable set computation are,
Flow*, (Chen et al. [2013]), CORA (Althoff [2015]) for non-
linear systems and SpaceEx (Frehse et al. [2011]) for linear
systems. Another class of approaches exists which uses simula-
tion based techniques to prove safety properties, are presented
in (Kanade et al. [2009]), (Deng et al. [2013]), Breach (Donzé
[2010]), and S-Taliro (Annpureddy et al. [2011]).

But, when it comes to the problem of designing correct-by-
synthesis controllers for data driven models, there is not much
existing work. One of the very few approaches in data-driven
control synthesis is Model Free Adaptive Control (MFAC) tech-
nique, discussed in (Hou et al. [2017a]). Dynamic lineariza-
tion serves as a fundamental method in the MFAC scheme.
The work in (Spall and Cristion [1998]) uses discrete time
measurements of the system to compute the control actions.
Our approach is different, since we do not use any complex
online scheme to estimate system behavior and compute control
actions. Another approach to assess stability based on the input-
output system data was presented in (Wang and Liu [2013]).
A survey of data-driven control techniques was presented in
(Hou and Wang [2013]). A common problem with many of
these approaches is that they are seldom scalable to higher
dimensional systems, and can end up being computationally
expensive for even smaller ones.

A data driven approach to synthesize a high level demand-
response strategy for cyber-physical energy systems was pre-
sented in (Behl et al. [2016]), (Jain et al. [2016]). Our approach
is different from the above data driven approach, since here we
are trying to solve a more low-level control law computation
problem for data-driven system models.

The closest technique that tries to accomplish control law
computation by merely keeping track of input-output relations
is that of Model Based Reinforcement Learning (Williams
et al. [2017]). Though reinforcement learning techniques have
proved to be quite successful recently, there isn’t much work
when it comes to proving properties on these closed loop
systems to make them more reliable. This is mainly due to the
difficulty imposed by the use of neural networks as function
approximators. Our verification approach proposed here can
be complementary to such techniques, since the reasoning
methods proposed here can be easily used to prove stability
and safety properties of closed loop systems learnt using other
techniques.

3. PRELIMINARIES

We first define the neural network models used, and the process
of training these models. Next, we discuss a recent approach for
finding the output range of a network given assertions over its
input. We refer the reader to a standard textbook for details on
neural networks Goodfellow et al. [2016].

A feedforward neural network N is a directed acyclic graph
whose nodes may represent “hidden neurons”, inputs or out-
puts. Each neuron implements a nonlinear function y = σ(x),
wherein the function σ for a “ReLU” (recurrent linear unit)
considered in this paper is σ(x) : max(x,0). The connections
between neurons have a weight wi j an the set of weights are
collectively written as W . Each neuron’s input is defined as
the weighted sum of the outputs from its incoming edges and
the output s obtained using the function σ . It is well known

that neural networks compute a function FW (x) over the inputs
x and weights given by W . This function is continuous and
differentiable almost everywhere over x ∈ R

n.

Training a Neural Network: Training a network starts from
given input-output pairs (xi,yi)

N
i=1 and a network with a known

graph structure but with unknown weights W . The goal of
training is to find weights W that minimize a predefined loss
function L (y′,y) that measures the deviation from two sets of
outputs y′,y. The overall optimization problem is written as that
of minimizing the overall loss over the given training data.

W
∗ : argmin

W

N

∑
j=1

L (F(x j;W),y j) .

Finding W ∗ is a hard problem in practice since it involves a
large nonconvex optimization problem. In practice, approaches
such as stochastic gradient descent have been employed to find
W ∗ that is a local minimum of the overall optimization prob-
lem. This process does not have any guarantees but is known
to perform quite well for many types of modeling problems.
Furthermore, there are many heuristics ranging from randomly
choosing starting points, fixing large number of weights in W

to 0 (thus insisting on a sparse model) and selecting random
subsets of data to calculate the gradient (Bottou [2010]). This
addresses the problem of overfitting.

Range Analysis for Neural Networks: The problem of range
analysis for a neural network starts from a network N and an
assertion ϕ[x] over the inputs to the network. The goal is to find
an interval [`,u] such that

ϕ[x] |= FW (x) ∈ [`,u] .

Often, we are interested in ensuring that the interval is tight.
Finding such an interval over the outputs is performed by
solving a series of 2m optimization problems, i.e., two problems
for each output variable y j:

max(min) y j s.t ϕ[x] ∧ y = FW (x) ,

However, the problem of solving optimization problems with
neural network constraints is highly nonlinear. Using the prop-
erties of ReLU function, it can be encoded as a large mixed
integer linear program (MILP). However, this approach seems
to be quite expensive in practice. Our recent work instead uses
a combination of local and “global” search steps alternating
between a simple local iterative step that uses easy to compute
gradient information to improve the current solution. While we
do use an MILP solver to perform global search, it is only
asked to provide a small ε improvement to an existing local
solution. We find that the combined approach is faster and
more effective for many of the networks tested. This approach
has been implemented inside the tool SHERLOCK (Dutta et al.
[2017]). Throughout this paper, we will use SHERLOCK as a
black-box solver with the following specification:

INPUT: A neural network N , linear assertions over the input
variables x and a tolerance parameter ε .

OUTPUT: Interval [`,u] over the outputs y such that (a) ϕ[x] |=
FW (x)∈ [`,u]; and (b) for each variable y j, we have ` j ≥ `∗j−

ε and u j ≤ u∗j +ε . The first condition says that the range [`,u]

is a valid overapproximation. The second asserts that [`,u] is
not more than ε away from the tightest range possible.

Furthermore, corresponding to the bounds ` j,u j, the ap-
proach provides witnesses x`, j,xu, j such that F(x`, j)≤ ` j +ε

and F(xu, j)≥ u j− ε .

By adjusting ε , it is possible to trade off the precision vs.
running time of our approach.

4. PROBLEM STATEMENT

In this section, we will formally describe the overall problem
statement for our approach. The problem consists of a given
discrete-time plant model P over state variables x ∈ R

n and
control inputs u ∈ R

l , and a plant function fp : Rn×R
l → R

n.
Further, we define an output function gp : Rn→ R

m that maps
state variables x ∈ R

n to outputs y : gp(x).

Definition 4.1. (Plant Model). Given a sequence of control in-
puts u(0), . . . ,u(n) and initial plant state x(0), the resulting se-
quence of plant states x(0), . . . ,x(n) and outputs y(0), . . . ,y(n)
are defined recursively as

x(t +1) = fp(x(t),u(t)), y(t +1) = gp(x(t +1)) for t ≥ 0.

Note that, y(0) : gp(x(0)).

The overall goal is to synthesize a control feedback function
h : Rm → R

l that maps output values to control inputs such
that the closed loop defined by fp and h satisfies some desired
properties. The closed loop function is defined by

C fp,gp,h(x) : fp(x,h(gp(x))) .

We will drop the subscript whenever fp,gp and h are known
from the context.

We would like to design h so that the resulting closed loop C

satisfies some desirable properties such as safety, reachability
of a given target, region stability (Podelski and Wagner [2007]),
or a general property defined in a suitable logic such as Signal
Temporal Logic (STL) (Donzé and Maler [2010]). In this paper,
we restrict our attention to basic properties of reachability and
region stability.

Definition 4.2. (Reachability and Region Stability). Let T ⊆R
n

be a given target set of states and X0 ⊆ R
n be the initial set of

states. We say that the closed loop C satisfies the reachability
property for T starting from X0 iff for all x0 ∈ X0, the resulting
execution trace σ : x(0),x(1), · · · ,x(t), · · · has a state x(t) ∈ T
for some t ≥ 0. In temporal logic, we write this property as
C |= X0 ⇒ 3(T).

Region stability extends the notion of reachability by also
requiring that the system reach the target set T and remain
in T forever. In temporal logic, we express this property as
C |= X0 ⇒ 3 2(T).

We consider the following problem statement:

Inputs: Neural networks Fp and Gp representing the functions
fp and gp, respectively; initial condition X0 and target set T .

Output: A feedback function h denoted by a neural network
H such that the resulting closed loop satisfies the reachabil-
ity property X0 ⇒ 3(T) (or region stability X0 ⇒ 32(T)).

The subsequent sections show how to (a) define the neural
network using a data-driven MPC scheme and (b) verify that
the networks satisfy reachability and region stability properties
using the range propagation algorithm as a primitive.

5. DATA DRIVEN MODEL-PREDICTIVE CONTROL

In this section, we introduce data-driven MPC approach that
learns a NN model for the controller using the idea of finite-
horizon lookahead from model-predictive control. For simplic-
ity, we explain our ideas using state-feedback controllers, i.e,
the function gp is the identity function. However, our ideas can
extend, in principle, to output feedback, as well.

5.1 Receding Horizon MPC

Receding horizon MPC uses a given depth k > 0 and considers
the next k steps of the system execution starting from the current
state x. Further, we will have a (positive definite) cost function
c(x0, . . . ,xk,u0, · · · ,uk−1), wherein x0, . . . ,xk are the states and
u0, . . . ,uk−1 are the control inputs applied over the next k steps.

Model-predictive control (MPC) uses a k-step horizon looka-
head to determine the best control actions at each step. Specif-
ically, at any given state x, the control action u is computed by
solving the following optimization problem:

min c(x,x1, . . . ,xk,u0, . . . ,uk−1)
s.t. x1 = fp(x,u0)

...
xk = fp(xk−1,uk−1)

(1)

The fixed data is the current state x. The remaining variables
x1, . . . ,xk and u0, . . . ,uk−1 are the unknown decision variables.
The result is a sequence of optimal k−step control inputs
u0, . . . ,uk−1. The feedback law simply selects the first control
point to define the feedback law h(x) : u0, discarding the
remaining control inputs.

Typically, MPC is used in an online receding horizon fashion
(so-called implicit MPC). The optimization problem is solved
at each time step to compute h(x). The control is applied and
in the next step, a fresh state measurement x(t +1) is obtained
for which the process is repeated again in the next time step. In
this paper, however, we will learn a neural network model for
the complex feedback function h in a data-driven fashion.

5.2 Data-Driven MPC

Our goal is to compute the controller explicitly as a function
from the state x of the system to the control inputs u. Our ap-
proach is based on learning the controller using reinforcement
learning where the reward is given by the cost function c.

The data-driven approach is initialized with three inputs:

Neural Network for Plant: We are provided a neural network
N f for the plant model fp (and in the general output-
feedback scheme, a network Ng for the output).

Generate Samples: We sample initial states x
(1)
0 , . . . ,x

(N)
0 from

the set X0 of possible initial states.
Neural Network Architecture: We assume a given neural

network structure Nh for the desired feedback law h with
unknown weights collectively written as Wh.

The overall goal of this approach is to learn the unknown
Wh using the back-propagation algorithm with the MPC cost
c(x0, . . . ,xk,u0, . . . ,uk−1) as the loss function. Figure 1 shows
the setup of the overall training MPC loop. The approach
composes the neural networks Nh for the controller and the
network N f for the plant, depicting an unwinding of k steps.

x
(j)
0

N f x1 N f xk−1 N f xk

Nh Nh Nh

Wh

u0 u1 uk−1

Figure 1. Unwinding of the closed loop model used to train the
unknown weights Wh of the feedback neural network. Note

that x
(j)
0 is a fixed sample, and u0, . . . ,uk−1,x1, . . . ,xk are

outputs that feed into the cost function evaluation. Finally,
Wh are the unknown weights of the network Nh.

Let S be the finite set of N state samples. For each sample
x0 ∈ S, and given current weights Wh for the feedback network,
the sample loss is written as

Ĉ(x0,Wh) : c(x0,x1, . . . ,xk,u0, . . . ,uk−1) ,

wherein x1, . . . ,xk,u0, . . . ,uk−1 are computed from x0,Wh, as
specified in Figure 1. The overall loss function for the network
training is represented as

LS(Wh) : ∑
x
(j)
0 ∈S

Ĉ(x0,Wh) .

5.3 Backpropagation-based Training

Given the setup involving a loss function L (Wh) with sample
set S, the core idea is to train the network weights Wh using
backpropagation. This process requires the repeated calculation
of a gradient ∇Wh

LS. This is performed systematically by com-
posing gradients for elementary operations. In fact, frameworks
such as TensorFlow to automate this computation using auto-
matic differentiation techniques, ensuring that the computation
is performed accurately (Abadi, M. et al. [2016]). We will
therefore, skip the details of the gradient calculations, noting
that it is easily automated.

Once the gradient calculation is automated, the approach uses
stochastic (batched) gradient descent wherein a batch Si with
|Si| ' 50 samples are drawn on the fly from the initial set and
a single setp of gradient is perfomed by computing ∇Wh

LSi
.

This is once again automated in the TensorFlow framework.
We also note that the gradient calculation and training can be
performed quite efficiently using GPUs.

5.4 Defining a Loss Function

Finally, we consider the process of systematically defining
a loss function from the property at hand, focussing mostly
on reachability and stability properties. In general, the loss
function for a given STL formula can be written using a
robustness metric (Donzé and Maler [2010], Fainekos and
Pappas [2009]). However, computing derivatives of this metric
with respect to trajectory perturbations can lead to technical
problems (Abbas and Fainekos [2011]). For one, robustness is
defined using a combination of max/min operators on top of
basic primitives that include point to set distances. As such, the
function is continuous under certain mild assumptions, but not
differentiable everywhere. One approach involves redefining
this under softmax/softmin operators to define a smooth and
differentiable robustness metric

In what follows, we will describe simple cost functions for
reachability and region stability properties.

Reachability Property: Let us consider the reachability prop-
erty for a given target set T . We will assume for simplicity that
T is described as non-empty set T : {x | t(x)≤ t0} wherein t is
a smooth (convex) function and t0 is a level. The robustness for
a trace with states x0, . . . ,xk is defined as (Cf. Donzé and Maler
[2010], Fainekos and Pappas [2009])

ρ3T (x0, . . . ,xk) :
k

min
j=0

(t(x j)− t0) .

A negative value of the robustness function indicates that the
property is true whereas a positive value indicates that it is false.

Let x0, . . . ,xk represent a trajectory. We wish to write down
a cost function reachCostT (x0, . . . ,xk) that approximates the
robustness function:

reachCostT (x0, . . . ,xk) : −softMax

t0− t(x0)
...

t0− t(xk)

.

The softmax of a vector z ∈ R
n is defined as

softMaxα(z) :
∑

n
i=1 zi exp(αzi)

∑
n
i=1 exp(αzi)

.

as α → ∞, we have that softMax→ max uniformly. Note that
softMax is a smooth function that is also concave (thus its
negation is convex).

Region Stability: Let us consider region stability with respect
to the set T defined by predicate t(x) ≤ t0. There are two
ways of defining robustness. The first approach simply uses the
robustness definition for the 32(T) property by using a min
over max formulation. A simpler cost function is to simply use
a quadratic cost function:

stabilityCostT (x0, . . . ,xk) :
k

∑
i=0

softMaxα(t(xi)− t0,0)
2 .

Such a function encourages the value of t(xi) to be as smaller
than t0, “as soon as possible” in the trace.

Another important step is to combine the cost function over
states with a corresponding cost that encourages the optimizer
to consider small values of the control input.

Therefore, the overall cost for reachability will be given by

c(x0, . . . ,xk,u0, . . . ,uk−1) :
k−1

∑
i=0

||ui||
2
2 + reachCost(x0, . . . ,xk) .

We augment the stability cost similarly.

6. REACHABILITY ANALYSIS

Given a closed loop C described by neural networks N f for
the plant model function fp and Nh for the feedback law h,
and initial state X0 (represented as a polyhedron over the state
space), we wish to compute symbolic representations for sets
X1,X2, . . . ,XK wherein Xi represents the reachable states of the
closed loop system given by the composition of the plant and
the feedback law in i steps. Here K is some fixed time horizon.
We will use reachability analyis as a primitive for checking
reachability, invariance and stability properties.

6.1 Post-Condition Operator

First, we compute an over-approximation of the post operator:

post(X ; fp,h) : {x ∈ R
n | (∃x0 ∈ X) x = fp(x0,h(x0))} .

In general, given a polyhedral set X and neural networks Np

and Nh for the functions fp,h, respectively, the precise post
condition is a union of polyhedron, that can be exponential in
the total number of neurons in the two given networks. This
is prohibitively expensive to compute precisely. Therefore, we
settle for a single polyhedron P(X) that approximates the post
condition. To do so, we employ template polyhedra:

Definition 6.1. (Template Polyhedra). A template T is a set
of expressions T : {e1, . . . ,er} wherein each ei is an linear
expression of the form ct

ix over the state variables. A template
polyhedron P over a template T is of the form:

∧r
j=1 ` j ≤ e j ≤

u j, for bounds ` j,u j over each template expression e j.

We will fix a template T and represent reachable sets by tem-
plate polyhedra over these templates. The post condition oper-
ation is therefore replaced by a template-based post-condition
operator postT (X ; fp,h) that yields bounds ` j,u j for each e j ∈
T by solving the following optimization problem:

` j(u j) : min(max) e j[x] s.t.x0 ∈ X0, u = h(x0), x = fp(x0,u) .

Note however, that this optimization involves functions h and fp

defined by neural networks. However, the combination of local
search and MILP encoding used in our tool SHERLOCK can
be modified almost trivially to solve this optimization problem.
Furthermore, the guarantees used in SHERLOCK extend. Thus,
we guarantee that the reported result is no more than ε away
from the true value, for the given tolerance parameter ε .

6.2 Reachable Set Computation and Acceleration

We have described how to compute a single step post-condition
using a range analysis tool SHERLOCK as a primitive. The next
step is to perform a k step reachability analysis that repeatedly
uses the postT operator to compute Xi+1 : postT (Xi; fp,h).
Here, each Xi for i > 0 is a template polyhedron given by the

template T and bounds `
(i)
j ,u

(i)
j for each expression e j ∈ T .

Because SHERLOCK guarantees the ε tolerance factor in T , let
us denote the exact reachable sets as Ri+1 : post(Ri; fp,h), with

R0 : X0. Let `
(∗,i)
j (and u

(∗,i)
j) denote the optimal value

min(max) e j[x] s.t. x ∈ Ri .

Lemma 6.1. The reachable bounds for expression e j at the ith

step (`
(i)
j ,u

(i)
j) differ from the best possible bounds by at most

iε: `
(i)
j ≥ `

(∗,i)
j − iε,u

(i)
j ≤ u

(∗,i)
j + iε .

In other words, as the size of the template |T | → ∞ (assuming
that the directions are sampled uniformly from the set of unit
vectors), and furthermore, ε → 0, our approach calculates the
precise convex hull of the reachable set in the limit.

Just as SHERLOCK can be used to compute a single step
reachability relation, we can accelerate this computation by

using the tool for a k step reachablity post
(k)
T (X ; fp,h) with

the tolerance factor ε . To achieve this, we calculate the bounds

`
(k)
j ,u

(k)
j as

`
(k)
j (u

(k)
j) :

min(max) e j[xk]
s.t. x0 ∈ X ,
x1 = f (x0,h(x0)),

. . . , xk = f (xk−1,h(xk−1)

.

Table 1. Details of the experiments. Legend: Acc:
Acceleration Factor, AccT : Acceleration Factor for
the Target Set, ReachT : Reach Set Time , InvT

: Time taken to prove stability of the target set .
All the tests were run on a Linux server running

Ubuntu 17.04 with 24 cores, and 64GB RAM

ID NN Layer Sizes Acc ReachT AccT InvT

1 2,52,3,4,3,4,3,200,2 1 7.53s 2 2.8s

2 2,102,52,3,4,3,4,3,250,2 2 2m25s 2 1m3s

3 3,103,53,4,5,4,5,4,600,3 2 2m33s 5 3m10s

4 3,103,53,4,5,4,5,4,300,3 1 48s 3 17.89s

5 3,103,4,5,4,5,4,300,3 5 63m6.4s 16 111m45s

6 3,303,203,4,252,3 2 16m25s 4 9m19s

7 4,104,5,6,5,6,5,600,4 3 19m42s 8 22m1s

Algorithm 1 shows the approach to check reachability of a
target set T by computing sets Xi reached after i ≥ 0 applica-
tions of the post operator. Likewise, to check for 32T , we use
(k, l) induction through repeated post condition computation as
stated in Algorithm 2. Here the values of k, l are incremented
starting from k = l = 1.

Algorithm 1 Check Reachability

1: procedure CHECKREACH

2: X̂0← X0 \T, i = 0
3: loop i:
4: Xi+1← postT (X̂i; fp,h)

5: X̂i+1← Xi+1 \T

6: if X̂i = /0 then return Proved

7: if i = N then return NotProved

Algorithm 2 Check Stability Using k,l induction

1: procedure CHECKSTABLE

2: X̂0← X0 \T, i = 0
3: loop k,l:

4: Xk← post(k)(X0; fp,h)

5: Xk+l : post(l)(Xk; fp,h)
6: if Xk ⊆ T and Xk+l ⊆ Xl then return 32(T)

7. EXPERIMENTAL RESULTS

We used the control synthesis technique explained above to
train controller for a data-driven neural network model for var-
ious benchmark systems taken from the literature. A detailed
descriptions of these benchmarks is available in our extended
version. We used standard ODE simulation techniques to gen-
erate the data from the differential equations, and then use the
data generated to learn a neural network model.

Our tool computes the reach-set overapproximations for various
initial conditions, and prove its convergence to a target set
around the origin. Table 1 reports on the sizes of the composed
neural networks and the time taken to run for each of the
benchmarks chosen. Plots of the reachable sets are shown in
Fig 2 for a few of the benchmarks.

8. CONCLUSION

To conclude, we have presented a synthesis approach that can
train the weights of a neural network feedback law using a
receding horizon formulation. Furthermore, we show how prop-
erties such as region stability can be established for the resulting

